Entri Populer

Selasa, 30 April 2013

NEUROLINGUISTICS



NEUROLINGUISTICS

Neurolinguistics is the study of the neural mechanisms in the human brain that control the comprehension, production, and acquisition of language. As an interdisciplinary field, neurolinguistics draws methodology and theory from fields such as neuroscience, linguistics, cognitive science, neurobiology, communication disorders, neuropsychology, and computer science. Researchers are drawn to the field from a variety of backgrounds, bringing along a variety of experimental techniques as well as widely varying theoretical perspectives. Much work in neurolinguistics is informed by models in psycholinguistics and theoretical linguistics, and is focused on investigating how the brain can implement the processes that theoretical and psycholinguistics propose are necessary in producing and comprehending language. Neurolinguists study the physiological mechanisms by which the brain processes information related to language, and evaluate linguistic and psycholinguistic theories, using aphasiology, brain imaging, electrophysiology, and computer modeling.



Different views on the relation between brain and language


Localism tries to find locations or centers in the brain for different language functions.
Associationism places language functions in the connections between different areas of the brain, making it possible to associate, for example,perceptions of different senses with words and/or “concepts”.

Dynamic localization of function assumes that functional systems of localized sub-functions perform language functions. Such systems are dynamic, so that they can be reorganized during
language development or after a brain damage.

Holistic theories consider many language functions as handled by large parts of the brain
working together.

Evolution based theories stress the relation between how brain and language evolved over time in different species, how they develop in children and how adults perform language
functions.







History



Neurolinguistics is historically rooted in the development in the 19th century of aphasiology, the study of linguistic deficits (aphasias) occurring as the result of brain damage. Aphasiology attempts to correlate structure to function by analyzing the effect of brain injuries on language processing. One of the first people to draw a connection between a particular brain area and language processing was Paul Broca, a French surgeon who conducted autopsies on numerous individuals who had speaking deficiencies, and found that most of them had brain damage (or lesions) on the left frontal lobe, in an area now known as Broca's area. Phrenologists had made the claim in the early 19th century that different brain regions carried out different functions and that language was mostly controlled by the frontal regions of the brain, but Broca's research was possibly the first to offer empirical evidence for such a relationship, and has been described as "epoch-making" and "pivotal" to the fields of neurolinguistics and cognitive science. Later, Carl Wernicke, after whom Wernicke's area is named, proposed that different areas of the brain were specialized for different linguistic tasks, with Broca's area handling the motor production of speech, and Wernicke's area handling auditory speech comprehension. The work of Broca and Wernicke established the field of aphasiology and the idea that language can be studied through examining physical characteristics of the brain. Early work in aphasiology also benefited from the early twentieth-century work of Korbinian Brodmann, who "mapped" the surface of the brain, dividing it up into numbered areas based on each area's cytoarchitecture (cell structure) and function; these areas, known as Brodmann areas, are still widely used in neuroscience today.
The coining of the term "neurolinguistics" has been attributed to Harry Whitaker, who founded the Journal of Neurolinguistics in 1985.
Although aphasiology is the historical core of neurolinguistics, in recent years the field has broadened considerably, thanks in part to the emergence of new brain imaging technologies (such as PET and fMRI) and time-sensitive electrophysiological techniques (EEG and MEG), which can highlight patterns of brain activation as people engage in various language tasks; electrophysiological techniques, in particular, emerged as a viable method for the study of language in 1980 with the discovery of the N400, a brain response shown to be sensitive to semantic issues in language comprehension. The N400 was the first language-relevant brain response to be identified, and since its discovery EEG and MEG have become increasingly widely used for conducting language research.
Neurolinguistics as a discipline
Interaction with other fields
Neurolinguistics is closely related to the field of psycholinguistics, which seeks to elucidate the cognitive mechanisms of language by employing the traditional techniques of experimental psychology; today, psycholinguistic and neurolinguistic theories often inform one another, and there is much collaboration between the two fields.
Much work in neurolinguistics involves testing and evaluating theories put forth by psycholinguists and theoretical linguists. In general, theoretical linguists propose models to explain the structure of language and how language information is organized, psycholinguists propose models and algorithms to explain how language information is processed in the mind, and neurolinguists analyze brain activity to infer how biological structures (such as neurons) carry out those psycholinguistic processing algorithms. For example, experiments in sentence processing have used the ELAN, N400, and P600 brain responses to examine how physiological brain responses reflect the different predictions of sentence processing models put forth by psycholinguists, such as Janet Fodor and Lyn Frazier's "serial" model, and Theo Vosse and Gerard Kempen's "Unification model." Neurolinguists can also make new predictions about the structure and organization of language based on insights about the physiology of the brain, by "generalizing from the knowledge of neurological structures to language structure."
Neurolinguistics research is carried out in all the major areas of linguistics; the main linguistic subfields, and how neurolinguistics addresses them, are given in the table below.

Subfield
Description
Research questions in neurolinguistics
the study of speech sounds
how the brain extracts speech sounds from an acoustic signal, how the brain separates speech sounds from background noise
the study of how sounds are organized in a language
how the phonological system of a particular language is represented in the brain
the study of how words are structured and stored in the mental lexicon
how the brain stores and accesses words that a person knows
the study of how multiple-word utterances are constructed
how the brain combines words into constituents and sentences; how structural and semantic information is used in understanding sentences
the study of how meaning is encoded in language


Topics considered
Neurolinguistics research investigates several topics, including where language information is processed, how language processing unfolds over time, how brain structures are related to language acquisition and learning, and how neurophysiology can contribute to speech and language pathology.
Localizations of language processes
Much work in linguistics has, like Broca's and Wernicke's early studies, investigated the locations of specific language "modules" within the brain. Research questions include what course language information follows through the brain as it is processed, whether or not particular areas specialize in processing particular sorts of information, how different brain regions interact with one another in language processing, and how the locations of brain activation differs when a subject is producing or perceiving a language other than his or her first language.
Time course of language processes
Another area of neurolinguistics literature involves the use of electrophysiological techniques to analyze the rapid processing of language in time. The temporal ordering of specific peaks in brain activity may reflect discrete computational processes that the brain undergoes during language processing; for example, one neurolinguistic theory of sentence parsing proposes that three brain responses (the ELAN, N400, and P600) are products of three different steps in syntactic and semantic processing.
Language acquisition
Another topic is the relationship between brain structures and language acquisition. Research in first language acquisition has already established that infants from all linguistic environments go through similar and predictable stages (such as babbling), and some neurolinguistics research attempts to find correlations between stages of language development and stages of brain development, while other research investigates the physical changes (known as neuroplasticity) that the brain undergoes during second language acquisition, when adults learn a new language.
Language pathology
Neurolinguistic techniques are also used to study disorders and breakdowns in language—such as aphasia and dyslexia—and how they relate to physical characteristics of the brain.



Brain imaging

                       



Main article: Neuroimaging

Since one of the focuses of this field is the testing of linguistic and psycholinguistic models, the technology used for experiments is highly relevant to the study of neurolinguistics. Modern brain imaging techniques have contributed greatly to a growing understanding of the anatomical organization of linguistic functions. Brain imaging methods used in neurolinguistics may be classified into hemodynamic methods, electrophysiological methods, and methods that stimulate the cortex directly.

1 komentar: